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By SUZIE PROTI ÈRE1,2, AREZKI BOUDAOUD2

AND YVES COUDER1,2
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A small liquid drop can be kept bouncing on the surface of a bath of the same
fluid for an unlimited time when this substrate oscillates vertically. With fluids of low
viscosity the repeated collisions generate a surface wave at the bouncing frequency.
The various dynamical regimes of the association of the drop with its wave are
investigated first. The drop, usually a simple ‘bouncer’, undergoes a drift bifurcation
when the forcing amplitude is increased. It thus becomes a ‘walker’ propagating at
a constant velocity on the interface. This transition occurs just below the Faraday
instability threshold, when the drop becomes a local emitter of a parametrically forced
wave. A model of the particle–wave interaction accounts for this drift bifurcation.
The self-organization of several identical bouncers is also investigated. At low forcing,
bouncers form bound states or crystal-like aggregates. At larger forcing, the collisions
between walkers reveal that their interaction can be either repulsive or attractive,
depending on their distance apart. The attraction leads to the spontaneous formation
of orbiting pairs, the possible orbit diameters forming a discrete set. A theoretical
model of the non-local interaction resulting from the interference of the waves is
given. The nature of the interaction is thus clarified and the various types of self-
organization recovered.

1. Introduction
This article is devoted to the various regimes of interaction of localized structures

formed by the association of drops bouncing on a fluid surface with the surface waves
they excite. The stabilization of drops by bouncing was first observed on an oscillating
soap solution (Walker 1978). It was shown recently (Couder et al. 2005a) to exist also
in pure fluids and to be due to the dynamics of the air film. At each oscillation, as
the drop hits the bath, an air film is squeezed between the two fluids. This film has
no time to break before the drop lifts off again, when the downward acceleration of
the bulk fluid becomes large. A steady regime is thus reached where the drop never
has enough time to coalesce with the substrate. In our previous work (Couder et al.
2005) this phenomenon was investigated in very viscous fluids where the stabilization
of drops of typical diameters 1 to 3 mm was observed at driving frequencies ranging
from 30 to 200 Hz. With small drops in the low-frequency range, the peak acceleration
had simply to be larger than gravity g. This is the condition of lift-off for an inelastic
solid body placed on a vertically oscillated solid plate (Pieranski 1983; Tufillaro &
Albano 1986). With very viscous fluids, the collision of the drop does not excite
surface waves but generates a simple trough in the interface. In between two bounces,
this trough relaxes partially. In the present article we obtain the same phenomenon of



86 S. Protière, A. Boudaoud and Y. Couder

coalescence in fluids with small viscosities (in the range 5 × 10−3 < µL < 0.1 Pa s). The
viscous length scale is now much smaller than the wavelength of the surface wave
at the driving frequency so that the bouncing can excite these waves on the surface
(figure 1). Our results concern the dynamics, the interactions and the self-organization
of these particle–wave associations.

We will show that they are related to the behaviours of the two-dimensional
nonlinear localized states (LS). We briefly recall some of the results concerning the
existence of the LSs, their interactions and self-organization. In spatially extended
homogeneous systems, instabilities usually lead to the formation of uniformly
distributed patterns, limited only by the system’s boundaries. However, localized
structures can also be generated that are associated with sub-critical bifurcations
(Fauve & Thual 1990; Deissler & Brand 1991). These LS can exist when the value of
the control parameter is in the hysteretic region and when small domains undergo a
transition to the bifurcated state, the rest of the field remaining in the basic state. These
so-called ‘local states’ (LS), the equivalent of solitons in dissipative systems, are stable
in two dimensions. It is of particular interest here that such structures were observed
in sub-critical variants of the Faraday instability. Called ‘oscillons’ in vibrated sand
(Umbanhowar, Melo & Swinney 1996) they also exist in very thin layers of viscous
fluids (Lioubashevski, Arbell & Fineberg 1996). More generally, a vast literature has
been devoted to the interactions of localized states in model equations (e.g. Aranson
et al. 1990; Moskalenko, Liehr & Purwins 2003), in the context of nonlinear optics
(Schäpers et al. 2000; Desyatnikov & Kishvar 2002; Vladimirov et al. 2002) or in
reaction diffusion systems (Schenk et al. 1998; Liehr et al. 2004), showing that they
have particle-like interactions leading to their static aggregation or to orbital motion.

In the present work, using bouncing drops slightly below the threshold of the
Faraday instability, we obtain point-like mobile sources of Faraday waves. We thus
excite localized waves in the vicinity of a super-critical bifurcation. The resulting
objects, which associate a particle and a wave, have non-local interactions. Their
self-organization leads to the formation of a great variety of bound or orbiting states.
Preliminary results on this experiment were published in Couder et al. (2005b) and
Protière et al. (2005).

2. Experimental set-up
A square container (8 × 8 × 1 cm) is partly filled with a layer of silicon oil of

thickness h = 4 mm. It is placed on a vibration exciter (Bruel and Kjaer 4809) driven
by the sinusoidal signal of a low-frequency generator. The resulting motion gives the
fluid a vertical acceleration γ = γm cos(2πf0 t) where the frequency is in the range
15 <f0 < 300 Hz and the amplitude can take values from 0 to 20 g.

The container was carefully manufactured and set horizontally and perpendicular
to the vibration axis. The fine-tuning was done by approaching the Faraday instability
and checking that the waves emitted by the four bordering menisci were of identical
amplitudes.

The chosen fluids were silicon oils because their surface is not sensitive to surfactant
effects. We explored a range of viscosities from µL =5 × 10−3 Pa s to 0.1 Pa s. Most
of the results reported here were obtained with Rhodorsyl oil 47 V 20 and 47 V 50
which have viscosities µL = 20 × 10−3 and 50 × 10−3 Pa s, respectively, surface tension
σ = 0.0209 Nm−1 and density ρ =0.965 103 kg m−3. The amplitude of the imposed
oscillation was below the threshold for the Faraday instability so that the upper
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(a)

(b)

(c)

Figure 1. Three photographs showing a drop as it bounces on the surface of a bath of
the same fluid oscillating vertically. Note the resulting travelling wave emitted on the liquid
surface at the forcing frequency. (D = 1 mm, µL = 20 × 10−3 Pa s, f0 = 80 Hz, γm/g =3). The
photographs correspond to half a period of the forcing (T0/2 = 6 ms).
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surface of the bath was stable. An accelerometer was used to measure the acceleration
γ imposed by the forcing.

With fluids of weak viscosity, it is difficult to sustain drops with D > 1.5 mm as the
flow of the air film sets the oil into motion so that the film drains faster. Smaller drops
0.1 <D < 1.5 mm are seen to bounce on the surface very easily. In order to create
such small drops on a viscous oil, we dip a pin into the vibrating bath, then remove
it swiftly. The breaking of the liquid bridge between the pin and the bath generates
drops with 0.1 <D < 1 mm. Repeating the process, we obtain a number of drops of
various sizes, simultaneously bouncing on the surface. We observe these drops with
a strong magnification and only retain those we need, usually chosen of identical
sizes. The others are then carefully removed by picking them up with the needle. The
lifetime of the drops being very long, they can be used for experiments lasting several
hours. It is possible to displace a drop at will by poking the interface with a needle.
The meniscus surrounding the needle acts as a repeller; thus, by approaching it, the
bouncing drop can be pushed gently without the drop itself being touched.

The motion of the drops can be decomposed into two components having different
time scales. There is a rapid bouncing motion as well as a slower mean horizontal
propagation. The former can be recorded with a fast video camera (1000 images s−1).
Observing it from the side we used an image processing system to single out the
evolution with time of one vertical line of the image. This provides recordings of the
vertical trajectory of the drop and of its reflection on the bath. A stroboscope and
a classical videotape recorder are better adapted to observing the slower horizontal
propagation of the drops. The surface is illuminated from the top with a diffuse light
having an intensity gradient. A semi-transparent mirror set at 45◦ angle is placed in
between the light source and the fluid bath. The reflection of the fluid surface in this
mirror is filmed, providing non-distorted images of the surface as observed from the
top.

3. The various regimes of bouncing of a single drop
Figure 1 shows the bouncing of a drop deposited on the oscillating bath. This

phenomenon depends on at least five parameters: µG the viscosity of the gas, µL

the viscosity of the liquid, D the drop diameter, f0 the forcing frequency and γm the
amplitude of the oscillating acceleration. Its complete exploration is beyond the scope
of the present article. For the viscosity and frequency dependence we can only present
trends. The bouncing of drops was obtained in silicon oil in a large viscosity range
5 × 10−3 < µL < 0.1 Pa s. The typical diameters of drops that can be sustained decrease
for fluids of small viscosity. Correspondingly the frequencies efficient in generating
bouncing are shifted towards larger values (Couder et al. 2005a).

Most experiments reported here were done using two oils of small viscosity
(µL = 20 × 10−3and 50 × 10−3 Pa s) at fixed forcing frequencies. As µL and f0 are
fixed, we can draw a phase diagram showing the different dynamical behaviours
observed as a function of the drop diameter D and γm/g, the ratio of the acceleration
amplitude to gravity. The diagram in figure 2 was obtained with µL =50 × 10−3 Pa s
at f0 = 50 Hz. A very similar diagram with only slightly shifted limits was obtained
with µL =20 × 10−3 Pa s at f0 = 80 Hz. In these diagrams, two thresholds set the limit
of the region of interest.

The lowest limit is the minimum acceleration γ B
m /g needed to sustain bouncing.

Below this threshold the drops coalesce with the substrate in a few tenths of
a second. The other limit is the Faraday instability. The threshold acceleration
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Figure 2. Phase diagram of the various behaviours of a drop as a function of its diameter
D and of the forcing acceleration γm/g, for a silicon oil with µL = 50 × 10−3 Pa s oscillated
at frequency 50 Hz. The behaviours in the various domains are the following. In B there is
simple bouncing, in PDB period-doubling, in PDC transition to temporal chaos by a period-
doubling cascade, in Int the drop has an intermittent behaviour, W is the region of walkers
and F the Faraday instability domain.

γ F
m of this instability was investigated as a function of the viscosity and the

forcing frequency, in low-viscosity fluids and assuming infinite depth, with the
result γ F

m = 24/3(ρ/σ )1/3µL(2πf0)
5/3 (Edwards & Fauve 1994 and Fauve private

communication). Working with various oils we recover this result. In the case of
figure 2 where µL = 50 × 10−3 Pa s and f0 = 50 Hz, we find γ F

m /g = 4.5. Above this
threshold, standing waves appear on the whole surface of the liquid due to the
parametric forcing. The drops still bounce on the wavy surface but their motion is
very chaotic and this generates irregular collisions and ultimately coalescence.

3.1. Simple bouncing

In the region B of figure 2, the drops bounce on the substrate at the forcing frequency
(figure 3a). For drops with 0.2 <D < 1.2mm (at µL =50 × 10−3 Pa s) the threshold
for bouncing γ B

m /g is close to 1. Dynamically, the non-dimensional number which
characterizes the deformation of a drop during the collisions is the Weber number
We = ρV 2R/σ , the ratio of the kinetic energy of the drop to its surface energy. Here
the Weber number is small so that the drop remains approximately spherical. Hence
the condition for bouncing is close to that for an inelastic solid mass to lift off from a
vertically oscillating substrate: γ B

m = g. As seen on figure 2, for very small drops, the
threshold is γ B

m /g < 1. This means that some elastic energy, due to surface tension,



90 S. Protière, A. Boudaoud and Y. Couder
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Figure 3. Three spatio-temporal diagrams z(t) showing the vertical trajectory of a small drop
and of its reflection on the oscillating surface. Time elapses from left to right. (a) The simple
bouncing regime with γm/g = 2.5. The amplitude of the droplet jump (∼0.13 mm) is of the
same order of magnitude as the amplitude of the surface oscillation (Ab ∼ 0.10 mm). (b) Period
doubling at γm/g =3.5. (c) The walker regime at γm/g = 4.3, (D = 1 mm, µL =20 × 10−3 Pa s,
f0 = 80 Hz). The amplitude of the droplet jump (∼0.30 mm) is now much larger than the
amplitude of the surface oscillation (AF ∼ 0.16 mm).

is stored in the drop so that the restitution coefficient is non-zero. At the other
extreme, for large drops (D > 1 mm), the threshold for bouncing γ B

m /g becomes larger
than 1. Such super-inelastic collisions have been previously investigated (Couder et al.
2005a). They occur in situations where the film separating the drop from the substrate
becomes wide and thin during the collision. Extra energy is needed to suppress the
resulting adhesion and this effect accounts for the increase of the threshold.

3.2. Period-doubled bouncing

When the control parameter γm/g is increased, the evolution of the drop’s vertical
motion depends on its size.

(i) Large drops (D > 1.2mm) simply keep bouncing at the forcing frequency in a
large range of values of γm/g. Ultimately, their vertical motion shows intermittent
disorder (region Int of figure 2) which will not be investigated here.

(ii) For small drops the successive jumps become alternately large and small
(figure 3b) so that the period doubles (region PDB of figure 2). When D < 0.6 mm,
this process repeats itself in a period doubling cascade (PDC on figure 2) leading to a
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temporally chaotic motion. This is exactly the behaviour of a solid ball on a vertically
oscillating solid substrate (Pieranski 1983; Tufillaro & Albano 1986).

(iii) The most interesting phenomenon occurs for drops of intermediate size,
0.8 <D < 1.1mm. In this range, the motion undergoes only one period doubling
before entering region W (figure 2) where the drop starts moving at a constant
velocity in the horizontal plane. For simplicity we will call these bouncing and
drifting drops ‘walkers’. Using oils of various viscosities forced at other frequencies,
we find that the domain of existence of these walkers is always located just below the
Faraday instability threshold and is directly linked to it.

(iv) Smaller 0.6 <D < 0.8 mm and larger 1.1 <D < 1.2mm drops also reach a
walking regime by synchronization but after a somewhat more complex evolution.

3.3. A drift bifurcation: the walkers

Observation with the fast camera reveals that the limit of region W corresponds to
the values of γm/g at which the period doubling becomes complete. The drop thus
touches the surface only once in two driving periods (figure 3c). Correspondingly the
drop spontaneously acquires a horizontal translation motion on the surface of the
bath with a well-defined velocity Vw . This velocity depends on the size of the drop
(the larger drops being faster) and increases with γm. This motion is intrinsic and
results from the interaction of the drop with the wave it generates (figures 4 and
5). The velocity of the drop which is in the range 0 <Vw < 20 mms−1 remains small
compared to the velocity V

ϕ
F of the surface waves forced by the drop at the Faraday

frequency (V ϕ
F =189 mm s−1 for a Faraday frequency fF = f0/2 = 40 Hz).

We investigated the transition from bouncing to walking and figure 7(a) shows the
evolution of the non-dimensional velocity VW/V

ϕ
F of three drops when the control

parameter γ m/g is increased. For the two smaller drops (D = 0.56 and 0.7 mm) the
transition is super-critical at a well-defined threshold. The velocity of the walker
grows as the square root of the distance to the threshold. For the larger drops
(D = 0.86 mm), the bifurcation is sub-critical with a large hysteresis. This transition
is a drift (or parity breaking) bifurcation similar to those first observed in one-
dimensional extended patterns (as in e.g. Rabaud, Michalland & Couder 1990) and
modelled in Ginzburg–Landau models (Coullet, Goldstein & Gunaratne 1989). They
were also theoretically investigated in the case of localized states (Osipov 1996).
The spontaneous motion of large-amplitude, localized waves packets was observed
in Faraday experiments performed on thin fluid layers driven at very high forcing
amplitudes by Lioubashevski et al. (1996).

The particle–wave interaction

The mechanism by which this transition from bouncing to walking occurs is linked
with the interaction of the particle with the wave and can be directly observed.

The region W lies below the Faraday threshold γ F
m . The interface is thus stable

everywhere (except in the vicinity of the cell’s borders where weak waves are generated
by the bordering menisci). The drop itself, bouncing at f0/2, emits travelling waves.
Their measured wavelength λF is in excellent agreement with the wavelength obtained
by setting ωF = 2π(f0/2) in the dispersion relation:

ω2 = {gk + (σ/ρ)k3} tanh(kh). (1)

These waves are thus the travelling equivalent of the Faraday standing waves usually
observed.
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(a) (d)

(b) (e)

(c) ( f )

Figure 4. Six photographs showing the motion of a walker and of the travelling wave it
emits on the liquid surface as seen from the top. The photographs cover two forcing periods.
Photographs (a) and (b) are taken when the drop comes into contact with the liquid interface.
(D = 0.65 mm, µL = 20 × 10−3 Pa s, f0 = 80 Hz, γm/g = 3.5).

Observation with the fast camera shows that the drop’s motion is composed of a
series of identical parabolic jumps (figure 5). This motion is sustained by a lock-in
phenomenon with the wave. The drop is in contact with the bath through an air
film for approximately a fifth of the Faraday period. When the drop hits the bath,
the collision forms a small crater in the surface (figures 4–6). The drop then lifts up
and the wave created by the shock evolves freely, the edge of the crater forming the
crest of a circular wave propagating radially. As time elapses the surface at the centre
of this crater bulges to form a spherical cap protrusion. This protrusion will have
maximum amplitude one forcing period later. The drop hits the surface again a little
later when this protrusion is spreading with decreasing amplitude. The impact with
the surface occurs on the side of the protrusion, on an inclined surface. During this
collision, the vertical component of the drop’s velocity is reversed, while the horizontal
one is sustained. Its free trajectory will again be an arc of a parabola. In the steady
regime this motion will, one Faraday period later, cause the drop to collide with the
surface at the same position on the ‘forward side’ of the next protrusion (figures 4, 5
and 6).

The relation between the drop and the wave is sketched on figure 6. Each time the
drop hits the surface a new dip forms, shifted from the trough that would have been
formed by the evolution of the previous wave-packet. The resulting wave is thus the
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Figure 5. Six photographs showing the motion of a walker and the travelling wave it emits
on the liquid surface as seen from the side. The photographs cover two forcing periods.
(D = 0.75 mm, µL =20 × 10−3 Pa s, f0 = 80Hz, γm/g = 3.5).

Figure 6. Sketch of the motion of a walker and of its interaction with the wave it emits. Note
the Doppler shifts of the waves emitted forwards and backwards. For simplicity the droplet
velocity is shown larger than actually observed. The waves are drawn of constant amplitude,
which is not realistic: in reality the amplitude is strongly modulated in time by the forcing (see
figure 5). They also decay with the distance to the source.

superposition of waves generated by a source that is slightly displaced at each jump.
For very fast walkers this creates a Doppler effect and the wavelength is reduced
ahead of the moving drop and increased behind. Owing to these frequency shifts,
the parametric forcing becomes less effective and the waves emitted forwards and
backwards by a walker have weaker amplitudes than those emitted laterally (figure 4).
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Near the Faraday threshold, a walker mostly generates two symmetrical lateral waves.
When the threshold is reached, the waves generated by the drop cover the whole cell.
As they reach the boundaries the standing waves form the pattern of the classical
Faraday instability.

3.4. A model for the particle–wave interaction

The interaction of the drop with the surface can be represented by the following
equation for the drop’s horizontal motion, which is averaged over a period of the
sub-harmonic vertical motion and assumed to take place in the direction of the x-axis:

m
d2x

dt2
= F b sin

(
2π

dx/dt

V
ϕ
F

)
− f vdx/dt . (2)

The left-hand side stands for the inertia of the drop, m ∼ 1 mg being its mass.
On the right-hand side are the forces exerted during the collision (which lasts a
time τ ), averaged over one Faraday period TF . Here, as seen above τ/TF ∼ 0.2.

The first term is the effective force due to the bouncing on an inclined surface;
F b ∼ mγm(AF /λF )(τ/TF ) ∼ 10−6 N is proportional to the amplitude of the vertical
acceleration γm and to the slope of the generated surface waves. This slope is
approximately AF /λF where AF ∼ 0.5 mm is the amplitude and λF the wavelength of
the surface wave at the Faraday frequency (λF ∼ 5 mm for fF = 40 Hz). The tilt of the
surface (figure 6) at the time of collision results from the difference in propagation
of the drop (moving with velocity VW = dx/dt) and the wave (of phase velocity V

ϕ
F )

since the previous collision. The argument of the sine corresponds to this phase shift.
The last term stands for the viscous damping due to the shearing of the air layer
between the drop and the bath during the contact; f V ∼ (µGs/hf )(τ/TF ) ∼ 10−6 N
m−1 s is the effective damping based on the viscosity of air µG, the ‘area of contact’
between the drop and the bath s ∼ 1 mm2 and the typical thickness of the film
hf ∼ 2 µm.

Seeking steady regimes of the system, and in the limit of small velocities, equation
(2) gives,

VW

V
ϕ
F

[
2π F b − 8π3

6

(
VW

V
ϕ
F

)2

F b − f V V
ϕ
F

]
= 0. (3)

For small values of F b only the motionless solution Vw = 0 is possible. But it becomes
unstable when F b becomes larger than a bifurcation threshold F b

c :

F b
c = f V

(
V

ϕ
F /2π

)
. (4)

Above this threshold, two stable solutions with Vw �= 0 appear with

Vw/V
ϕ
F = ±(

√
6/2π)

√ (
F b − F b

c

)
/F b (5)

and a transition from no translation to walking occurs. The drop can move either to
the right or to the left at constant velocity (or in any direction if the equation was
written in two dimensions). This system, where the control parameter is F b, undergoes
a supercritical pitchfork bifurcation. The order parameter (the non-dimensional
velocity VW/V

ϕ
F ) varies as the square root of the distance to threshold. This

bifurcation is similar to a drift bifurcation, although its origin is different. Figure 7(b)
shows the bifurcation as computed from equation (3). We can see that in this
simulation there is only one parameter, so that the bifurcation is the same for all
drops. Experimentally the bifurcation threshold as well as its type (super- or sub-
critical) depends on the drop size. The existence of a hysteresis for a large drop might
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Figure 7. (a) The non-dimensional horizontal velocity VW/V
ϕ
F of three walkers of different

diameters as a function of the forcing acceleration γm/g (µL = 20 × 10−3 Pa s, f0 = 80 Hz). The
arrows show the hysteretic cycle observed for the largest drop D =0.87 mm for which the tran-
sition to walking is sub-critical. (b) The horizontal velocity of a walker obtained in the model
(equation (3)) as a function of the model’s control parameter Fb/f

V .
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Figure 8. The stroboscoped walker’s trajectory during three periods of a billiard-like motion
in a square cell (8 cm × 8 cm). This trajectory was obtained by the superposition of images
where only the drop was lit. The black frame corresponds to the walls of the cell. The minimum
distance of approach of the drop to the wall is ∼ λF . The angle of incidence (relative to the
normal to the wall) is i = 38◦ while the angle of reflection is i ′ = 53◦ (µL =50 × 10−3 Pa s,
f0 = 50 Hz, γm/g = 4, Vw = 18 mm s−1).

be due to the longer contact time or to the effect of the deformation of the drop
during its collision with the bath, neither of which is taken into account in the model.

3.5. The billiard motion

When a walker approaches one of the boundaries of the cell, it is repelled and
undergoes a reflection without touching the wall. In a square cell, as shown on figure 8,
the drop is thus observed to have a motion similar to an undamped classical billiard
ball, but with the following specific features. The first one is that during the collisions
the drop remains at a finite distance from the boundary and has a curved trajectory
with no singularity. This is linked to the spatial extent of the wave. The closest
approach to the walls on figure 8 is of the order of the wavelength λF . A second
characteristic is that the angle of incidence and the angle of reflection are not equal.
The reflection results from the interaction of the drop with a wave formed by the
superposition of the drop’s wave, its reflection in the boundary, and the wave emitted
by the boundary meniscus. The complete investigation of this effect is beyond the
scope of the present article. Far from the Faraday threshold the damping length of
this wave is small, so that the drop turns back close to the wall. For values of γm/g

closer to the Faraday threshold, the wave extent becomes large and the collision
corresponds to an increasingly non-local interaction, the drop always remaining far
from the boundary.
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4. The interaction and self-organization of several drops
A remarkable feature of bouncing drops is that they are mobile sources of surface

waves. Their motion results from the interaction of the drops with the sum of the
waves they generate. These waves have a frequency fixed by the bouncing. Their
length of damping depends on the fluid viscosity and on the value of D and γ m/g.

Three types of situations are observed corresponding to the excitation by a drop of
different waves:

(i) When the waves are strongly damped, compact aggregates form.
(ii) When surface waves are generated at either the forcing frequency or half of

it, bound states are formed where the drops stabilize at well-determined distances
from each other. When many identical drops are present, two-dimensional crystalline
arrangements form.

(iii) The walkers, interacting through the interference of the surface waves they
emit at the Faraday frequency, have dynamical behaviours such as various orbital
motions or chaotic trajectories.

4.1. Self-organization of simple bouncers

Aggregation into dense clusters

In the very viscous fluid (µL > 10−1 Pa s) investigated previously (Couder et al.
2005a), each drop, as it collides with the surface, deforms it into a small depression.
This is also observed in the present set of experiments for µL = 50 × 10−3 Pa s when
large drops D > 1.2mm are just above their bouncing threshold. In these cases, when
two drops are simultaneously present in the cell, there is a weak attractive interaction
between the troughs they generate. The drops, following adiabatically the drift of their
troughs, are observed to move slowly towards each other This attractive interaction
between drops is analogous to the interaction between small floating objects due to
the menisci they create (Chan, Henry & White 1981). When the drops ultimately
come into near contact, they usually remain separated by a stable air film. If several
identical drops are deposited on the surface they ‘condense’ to form stable rafts with
a dense triangular lattice (figure 9a).

Bound states and crystalline patterns

Remaining in region B of the phase diagram, when γ m/g is increased, the self-
assembly changes. Two identical bouncers will still drift towards each other but they
now stop at a finite distance dbd

0 apart, where they remain bound. If two drops had
previously condensed next to each other, they will repel when γ m/g is increased and
stabilize at dbd

0 apart. In this regime the non-local interaction between drops is due to
the damped surface wave each of them emits. In the self-organized stable arrangement
each drop is at such a position that its successive collisions with the interface leave it
motionless. Each drop, in region B, oscillates at the forcing frequency and the wave
it emits is strongly damped. In this region only one value of dbd

0 is observed; it is
slightly smaller than λ0, the wavelength of the surface wave at the forcing frequency.

When three drops bind to each other, they form an equilateral triangle of side dbd
0 .

This is the building block of the self-assembly of larger crystal-like structures which
are observed when more drops keep aggregating. Figure 9(b) shows a two-dimensional
crystallite formed by seven identical drops.

These bound states and clusters are very similar to those predicted theoretically for
the self-organization of localized states (Aranson et al. 1990; Vladimirov et al. 2002).
Such clusters were observed experimentally in sub-critical Faraday experiments (in
sand, Umbanhowar et al. 1996, or in thin fluid layers, Lioubashevski et al. 1996),
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(a)

(b)

Figure 9. (a) A compact aggregate of seven large drops in a viscous oil (µL = 500 × 10−3 Pa s,
f0 = 30 Hz, drops diameter D = 2 mm). (b) An example of the self-assembly of seven steady
bouncers into a cluster with a crystalline triangular lattice. The photograph is taken when
the deformation of the surface is maximum (µL =20 × 10−3 Pa s, f0 = 56 Hz, D = 0.66 mm,
dbd

0 = 2.5 mm).

in reaction diffusion systems (Schenk et al. 1998) and in nonlinear optics (Schäpers
et al. 2000; Desyatnikov & Kishvar 2002).

When the drops forming the aggregate are of different sizes, the emitted wave is not
of the same amplitude in every direction, being weaker on the side with small drops.
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The reaction will thus generate a spontaneous displacement of the whole aggregate
on the surface. The simplest case is that of two drops which will move slowly as a
pair, the small drop leading the way.

In the PDB region the same types of bound states and crystalline aggregates are
observed but the successive jumps are now uneven. The bouncing drops excite a
superposition of waves of frequency f0 and f0/2, the latter becoming dominant when
γm/g is increased. Two particles forming a bound state a distance dbd

0 apart are thus
observed to move away from each other and stabilize at a new distance dbd

1 which is
usually slightly smaller than the wavelength λF , the Faraday wavelength associated
with frequency f0/2. Other bound states at distances apart of dbd

2 slightly smaller
than 2λF are observed. However these are not the only possible states. Because of
the period doubling, the drops can have two different phases relative to the forcing.
In the case where the larger jumps of the two drops occurs at opposite phases, the
observed distances dbd

n follow (n + 1/2)λF , the closest pair corresponding to n= 0.
This will be discussed in more detail for walkers.

4.2. The interactions and dynamical behaviour of several walkers

Scattering of two identical drops

Let us now consider the situation where two walkers (that we will choose identical)
are present in the same cell. Both of them will have a billiard motion so that,
inevitably, they will come close to each other. During these encounters the trajectories
of the drops are deflected even though the drops themselves do not touch each other.
A variety of events can be observed.

For some values of the collision parameters the walkers repel each other as shown
on figure 10(a). In the simplest cases the drops have roughly hyperbolic trajectories
and the modulus of their velocities is unchanged after the collision. For collisions
with different initial conditions an attraction is observed between the walkers, which
can lead to a capture where the drops start orbiting around each other (figure 10b).

In some instances, both in the repulsive and attractive cases, the collision can be
complex and involve transient oscillating trajectories similar to those predicted by
Gorshkov, Lomov & Rabinovich (1992).

Orbital motions

The orbiting pairs obtained by capture form stable and well-defined associations
of walkers. These orbiting pairs can also be obtained directly. When γm is increased
from region PDB into region W, a motionless bound state of two particles of the
former region will spontaneously start rotating in the latter. This is similar to the
rotating bifurcation predicted theoretically by Moskalenko et al. (2003) in a reaction-
diffusion model where they predict that a motionless bound pair starts rotating above
a well-defined threshold.

We undertook an investigation of all the possible orbits of two given identical
walkers (figures 11 and 13). For drops of the same size the orbital motion is
symmetrical, the particles moving around their ‘centre of mass’ (figure 11). The
diameters dorb

n of the possible orbits can only take a discrete set of values. The orbits
being stable, after measuring one of them we disturbed it, separated the walkers
and let them collide again so as to reach another orbital state. Since the oscillation
frequency of the drops is half the forcing frequency, two walkers can have either the
same or opposite phases. By decreasing γm into region B (figure 2) and then increasing
it back into W it was possible to change the drops phases and thus explore the two
situations with the same pair of drops.



100 S. Protière, A. Boudaoud and Y. Couder

(a) (b)

(c) (d)

Figure 10. The horizontal trajectories of identical walkers in the two types of collisions they
can undergo. Both are shown by a superposition of successive images obtained with drops
lit from the side on a dark background (µL = 20 × 10−3 Pa s, f0 = 80 Hz). (a) Scattering of
two drops by a repulsive collision (minimum distance 9 mm). (b) Mutual capture of two
walkers of identical size into a circular orbit of diameter 6 mm. (c, d) Collisions obtained in
the theoretical model computed using equations (7). The coefficients are estimated from the
experimental characteristics and the initial conditions are chosen to recover the collisions in (a)
and (b).

The measured diameters dorb
n of the circular orbits of two given identical walkers

form a set of discrete values which are found to be directly related to the Faraday
wavelength. They can be written

dorb
n = (n − ε0)λF (6)

where for drops bouncing in phase, n are the successive integers n= 1, 2, 3, . . .

while for drops bouncing with opposite phases the successive values of n are 1/2,
3/2, 5/2. . . . They are all shifted by an offset ε0 which is the same for all orbits
of these two walkers. This can be seen on figure 13(a) which is a plot of the
non-dimensional diameters dorb

n

/
λF of the orbits (of figure 11) as a function of

their order n. At these experimental conditions (D = 0.7 mm, µL = 20 × 10−3 Pa s,
f0 = 80 Hz, γm/g = 3.9) we find ε0 = 0.2 ± 0.05. For other pairs of drops having a
different diameter, slightly different values of ε0 can be found but always in the same
typical range 0.15 < ε0 < 0.25.
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(a) (b)

(d)(c)    

Figure 11. Four photographs showing the first orbital modes of identical drops bouncing on
the liquid surface as seen from the top. Note that in (a) and (c) the drops bounce with opposite
phases. Photograph (b) is taken exactly at the time when both drops hit the slanted surface of
the waves. (a) n= 0.5, where dorb

0.5 = 1.65 mm, (b) n= 1, where dorb
1 = 3.7 mm, (c) n= 1.5, where

dorb
1.5 = 5.9 mm, (d) n= 2, where dorb

2 = 8.4 mm (D = 0.7 mm, µL =20 × 10−3 Pa s, f0 = 80 Hz,
γm/g = 3.9).

Visual observation of the liquid surface (see figure 11) shows that, at the time they
hit the surface, the number of antinodes of the surface wave between the two drops is
n−1. Because of the offset, the radius of the orbit is such that each drop, when it hits
the surface, falls on the ‘inward slope’ of the wave excited by the other (see figure 11b
or d and figure 15a, b). This provides at each collision the centripetal impulsion
needed for orbital motion.

The periods T orb
n of the motion are approximately proportional to the diameter of

the orbit dorb
n (figure 13b). This shows that the drops bound in an orbit have velocities

V orb
n slightly smaller than, but close to, the velocity Vw they had as free walkers.
Two walking drops of different diameters having thus different velocities can also

form an orbiting state. The centre of rotation is then located at a distance from each
drop such that, with the same angular velocity, they retain approximately the different
linear velocities they had as walkers. The radius of rotation of the faster walker is thus
larger than that of the slower one, so that we observe the counter-intuitive situation
where the large drop rotates around a centre of rotation close to the small one.
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(a)

(b)

(c)

Figure 12. Three photographs taken with the fast camera of two orbiting drops bouncing
with opposite phases as seen from the side (D = 0.8 mm, dorb

n=1.5 = 5.9 mm, µL = 20 × 10−3 Pa s,
f0 = 80 Hz, γm/g = 3.9).

Other types of organization

Finally another mode of self-organisation of two identical drops is observed in which
they form a bound pair of parallel walkers. In this situation, the two drops, at a fixed
distance from each other, move with constant velocities on parallel trajectories. This
mode is experimentally less frequent than orbits because the bound pair of parallel
walkers is rapidly broken by collisions with the cell’s walls. In a frequent variant of
this type of motion, the drops move together but oscillate transversally with opposite
phases.

When more drops interact, a variety of regimes are observed which are beyond
the scope of this article. Let us simply note that, in the most common situation,
the motion resulting from many-body interaction is chaotic. However when
the number of drops is small, there can be the formation of complex organized
structures. Figure 14 shows an example of the oscillating orbital motion of two large
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Figure 13. (a) The measured diameters dorb
n of the orbits of two walkers as a function of their

order n. The plot is of the ratio dorb
n /λF where λF = 4.53mm is the wavelength of the surface

waves at the Faraday frequency. The squares correspond to two drops with the same phase,
the diamonds to opposite phases. The linear extrapolation to zero of the best fit (continuous
line) gives the value of ε0 (D = 0.7 mm, µL = 20 × 10−3 Pa s, f0 = 80 Hz). (b) The period T orb
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n of the
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Figure 14. Measured trajectories of the oscillating orbiting motion of three drops of uneven
sizes forming an approximately equilateral triangle (µL = 50 × 10−3 Pa s, f0 = 50Hz, γm/g = 4,
D1 = 0.5 mm, D2 = 0.65 mm, D3 = 0.6 mm).
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drops orbiting around a smaller one, the rotating cluster forming approximately an
equilateral triangle.

4.3. A model for the interaction of walkers and their resulting self-organization

As discussed above, the motion of a walker is due to the interaction of the drop with
its wave. The motion of a given drop is not only coupled to its own wave but also
to any wave which disturbs the region where it bounces. When several walkers are
present in a cell, the trajectory of one of them will be affected whenever the wave from
another source overlaps and creates interference in the region of its bouncing. This
is the source of a non-local interaction, which can be either attractive or repulsive,
depending on the distance. The collisions between walkers are different from those
of point-like particles because they involve the interference of two wave fields. With
this type of interaction Gorshkov et al. (1992) predicted that it is possible to obtain
chaotic scattering in the collision of two particles only. This is the origin of the
oscillatory collisions we observe. We also note that the spatial extent of the wave is
tunable so that the range of interaction can be chosen at will.

The horizontal motion of two interacting drops of masses m1 and m2 can thus be
modelled with the generalization of equation (2). Two coupled vectorial equations
are written (as previously, describing the motion averaged over a period TF of the
sub-harmonic vertical motion)

m1

d2r1

dt2
= F b

1 sin

(
2π

‖dr1/dt‖
Vϕ

)
dr1/dt

‖dr1/dt‖ + αF b
2→1

(r1 − r2)

(r1 − r2)2
sin(kF ‖r1 − r2‖)

− f V
1

dr1

dt
,

m2

d2r2

dt2
= F b

2 sin

(
2π

‖dr2/dt‖
Vϕ

)
dr2/dt

‖dr1/dt‖ + α F b
1→2

(r2 − r1)

(r2 − r1)2
sin(kF ‖r2 − r1‖)

− f V
2

dr2

dt
.




(7)

The second term on the right of each equation accounts for the interaction of each
drop with the wave excited by the other. The parameters F b

1 , F b
2 , F b

1→2, F
b
2→1 can be

obtained as for F b in equation (2). In (7), the parameters of the first (respectively
second) equation are proportional to m1 (respectively m2). The interaction strength
F b

2→1 (F b
1→2) is proportional to the amplitude of the wave emitted by the second (first)

drop. All these parameters have the same order of magnitude. If the two drops are
identical, F b

1 = F b
2 = F b

1→2 = F b
2→1 = F b.

The parameter α (a length) takes into account two effects.
(i) The waves emitted by both drops being approximately circular, in the absence

of damping their amplitudes decrease radially as 1/‖r2 − r1‖ and a matching on a
scale α0 of the order of λF is necessary near the origin.

(ii) Below the Faraday threshold, the actual amplitude decrease is faster than the
1/‖r2 − r1‖ dependence and results from a balance between the damping of the waves
due to viscosity and their forcing by the imposed oscillation. The exact form of α

should be α =α0 exp(−‖r2–r1‖/Λ), where the characteristic length Λ(Λ 	 λF ) is a
function of the distance to the Faraday instability threshold where it becomes infinite.
In the following, for simplicity, we neglected this decrease and used α = α0 ∼ λF .
Equations (7) are written for two drops bouncing in phase. The motion of drops



Particle–wave association on a fluid interface 105

(i) (ii)

w1 w2

(i) (ii)

0
r

01

01

2π 4π

ε0′

ε0

2π

z

∂z–
∂d

′′

d

4π d

(i)

(a)

(b)

(ii)

(ii)

+ +- -

01 02

Figure 15. (a) Sketch of the profile and the derivative of the wave w1 emitted by drop
(i) (without its radial decrease) at the time of the collisions of the drops with the surface.
Depending on the distance, the collision of (ii) with the surface will result in an attraction
(regions +) or a repulsion (regions −). In the attractive region, when the two drops orbit around
each other, the two possible positions of impact of the second drop (predicted by equations
(7)) are shown here for mode n= 2. The stable position is in black, the unstable one in grey.
(b) Sketch of the radial cross-section of the two travelling waves w1 and w2 emitted by two
identical orbiting drops (labelled (i) and (ii) respectively) bouncing in phase. The shape of
the interface results from the superposition of these two waves. The amplitudes are drawn
at the time where the two drops hit the surface. The radial damping of each wave has been
included. The distance between drops corresponds to a mode n= 2 with an offset of ε0 = 1/4
(fast drops).

having opposite phases can be simulated by simply changing the sign of the interaction
coefficients, which corresponds to a phase shift of π.

If the proper initial conditions are chosen, the numerical integration of these ODEs
yields collisional trajectories very similar to the experimental ones (figure 10c, d).
On increasing the impact parameter, a succession of repulsive and attractive
collisions is found, demonstrating the spatially oscillating character of the interaction
(figure 15a).

We investigated quantitatively the binding of the two drops into orbital motion
with quantized diameters (figure 13). Such orbits are analytical solutions of the set
of equations (7). In these solutions, the velocity of each drop is constant and equal
to the velocity it would have as a walker. In the radial direction, equating the force
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due to the interaction term to the centrifugal effect yields (for two identical drops) a
condition on the possible orbital diameters dorb

n given by:

sin
(
kF dorb

n

)
= −2m V 2

orb

α0 F b
. (8)

There are two discrete sets of solutions, dorb
n =(n − ε′

0)λF and dorb
n = (n − ε′′

0 )λF , which
are both multiples of the wavelength, with two possible offset distances ε′

0 and ε′′
0

defined by

ε′
0 =

1

2π
Arc sin

(
2mV 2

orb

α0F b

)
, (9)

ε′′
0 =

1

2
− 1

2π
Arc sin

(
2mV 2

orb

α0F b

)
(10)

(see the sketch in figure 15a). The numerical integration of equations (7) shows that
only the second set is stable. In this set, ε′′

0 is a function of the velocity of the walkers
Vorb and ranges between 1/2 and 1/4. When the parameters corresponding to the
experimental situations (Vorb ∼ 1 cm s−1) are used with α = λF , the computed orbits
correspond to ε′′

0 ∼ 0.45, a value larger than found experimentally. The experimental
value ε0 = 0.2 ± 0.05 is closer to the minimum value ε′′

0 = 1/4 only obtained in the
model for fast walkers when both drops impact the waves on their maximum slopes
(figure 15b). This discrepancy can be ascribed to the simplifications in the theoretical
model, which take into account neither the details of the collision, nor the non-
instantaneous propagation of the wave. Both effects should result in a shift in the
phase of the interaction waves in equation (7). This would account for the difference
in the offset ε0 between theory and experiment.

Note that if 2mV 2
orb/α0Fb is larger than 1, no orbital solution is possible. This

is experimentally observed: very fast walkers fail to become bound into orbits
because the collisions with the wave do not provide a large enough centripetal
force. Numerically, when α0 is small the attractive force is not sufficient to generate
orbits.

In spite of its simplicity, this model allowed us to recover all the behaviours of two
identical drops: repulsive collisions, binding into quantized orbits and binding into a
parallel walk. Finally when two different masses m1 and m2 are set in equations (7)
we recover the specific orbiting where the centre of rotation is close to the smaller
drop. Overall, this model retains the essential features of the experimental system,
namely the interaction of mobile real particles through the waves they excite.

5. Conclusion
Whether in the simple bouncing state or in the walking state we have obtained

in these experiments phenomena characterized by the association of a particle and
a wave. In the limit where no wave is emitted by the bouncing, the drops simply
aggregate to form dense rafts as floating non-wetting particles would. All the other
types of self-organization (solitary motion, bound states, non-compact rafts, orbits
etc.) involve the non-local interaction between drops due to the waves they excite.
This is a situation met in many fields of physics. In solid-state physics for example,
electrons moving in a crystalline lattice emit phonons and this coupling of particles
and waves leads to the formation of polarons or Cooper pairs in supra-conductors.
We will limit the discussion to classical systems however. Our present results are



Particle–wave association on a fluid interface 107

related to experiments which deal with self-adaptation, and to others concerned with
the interaction of nonlinear wave-packets.

It was shown that adding mobile masses to bounded vibrating systems gives them
additional degrees of freedom. Systems with well-defined resonances such as vibrating
wires (Boudaoud, Couder & Ben Amar 1999a), or liquid membranes (Brazovskaia &
Pieranski 1998; Boudaoud 1999b) thus acquire the possibility of self-adaptation. The
additional mobile masses are found to exhibit a slow dynamics by which the whole
system adapts to become resonant at the imposed forcing frequency. Here we also
have small masses coupled to waves. Their self-organization is observed but now in a
large non-resonant medium.

Comparison to the interactions and self-organization of nonlinear localized states
has permitted us to clarify, by reference to them, the specificity of our system. All
the classical systems in which LSs are observed have sub-critical bifurcations so that
domains in a bifurcated state appear, imbedded in a basic state background. An
annular region of small-amplitude waves, often called the tail of the disturbance,
usually surrounds these LSs. The non-local interaction between domains is due to the
interference of these waves. In our experiment the Faraday instability is super-critical
and we are below its threshold. The nonlinear phenomena are thus entirely due to
the bouncing of the drop, acting as a point-like disturbance. The emitted wave, which
is in a damped linear regime, is, as in the case of LSs, responsible for the interaction.

Finally let us note that the dual particle/wave character of the walkers is tunable.
Because of the drop’s mass a walker has a real inertia but its interactions result from
the waves it emits. Both characters can be adjusted: the mass of the drop can be
chosen at will, while the distance to the Faraday instability threshold determines the
damping distance of the wave and thus the interaction range.

We are grateful to Emmanuel Fort for enlightening discussions and to Laurent
Quartier for his help in building the experimental set-up.
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